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a b s t r a c t 

It has recently been shown that acute stress affects the allocation of neural resources between large-scale brain 

networks, and the balance between the executive control network and the salience network in particular. Mal- 

adaptation of this dynamic resource reallocation process is thought to play a major role in stress-related psy- 

chopathology, suggesting that stress resilience may be determined by the retained ability to adaptively reallocate 

neural resources between these two networks. Actively training this ability could hence be a potentially promising 

way to increase resilience in individuals at risk for developing stress-related symptomatology. Using real-time 

functional Magnetic Resonance Imaging, the current study investigated whether individuals can learn to self- 

regulate stress-related large-scale network balance. Participants were engaged in a bidirectional and implicit 

real-time fMRI neurofeedback paradigm in which they were intermittently provided with a visual representation 

of the difference signal between the average activation of the salience and executive control networks, and tasked 

with attempting to self-regulate this signal. Our results show that, given feedback about their performance over 

three training sessions, participants were able to (1) learn strategies to differentially control the balance between 

SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where 

they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect 

of a mild electric stimulation. The current study hence constitutes an important first successful demonstration 

of neurofeedback training based on stress-related large-scale network balance – a novel approach that has the 

potential to train control over the central response to stressors in real-life and could build the foundation for 

future clinical interventions that aim at increasing resilience. 
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. Introduction 

Our body’s response to acute stress constitutes an essential adap-
ive mechanism that helps us to properly evaluate and react to potential
hreats in our environment ( de Kloet et al., 2005 ). However, repeated ex-
osure to stressors can also lead to maladaptation and mental disorders
 Kalisch et al., 2015 ). Stress related mental illness, such as depression
nd anxiety disorders, are among those with the highest disease burden
nd efforts to reduce their high prevalence have remained largely un-
uccessful ( Rehm and Shield, 2019 ; Vos et al., 2017 ). This has triggered
 paradigm shift from treatment to prevention-oriented health research
ver the last years, with a steadily increasing interest in resilience – an
ndividual’s ability to positively adapt to being exposed to a stressor
 Kalisch et al., 2015 ). 
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Recent neuroimaging research has revealed how acute stress affects
he human brain at the systems level, with stress-related hormones and
eurotransmitters triggering shifts in large-scale brain network config-
rations ( Hermans et al., 2014 , 2011 ; van Oort et al., 2017 ). In par-
icular, stress appears to induce a shift in the balance between the
alience network (SN), which integrates cognitive processes associated
ith salient stimuli, including bottom-up attention ( Seeley et al., 2007 ),
nd the executive control network (ECN), which regulates higher-order
ognitive functions such as working memory and top-down attention
 Vincent et al., 2008 ). It is believed that during the acute stress phase,
eural resources are reallocated to strengthen SN activity at the cost of
CN function ( Young et al., 2017 ) – a balance shift that is subsequently
ctively reversed to return to homeostasis ( Hermans et al., 2014 ). Mal-
daptation of this dynamic resource reallocation process is thought to
lay a major role in stress-related psychopathology ( Akiki et al., 2017 ;
an Oort et al., 2017 ; Menon, 2011 ), suggesting that stress resilience
ay be determined by the retained ability to adaptively reallocate neu-

al resources between these two networks. Actively training this ability
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1 Notably, one individual (participant 6) scored unexpectedly high on the 

STAI-trait questionnaire (69). Excluding this participant from analysis, however, 

does not change the interpretation of the results or conclusions drawn in this 

study. 
ould hence be a potentially promising way to increase resilience in in-
ividuals at risk for developing stress-related symptomatology. 

In the current study, we investigated training the voluntary realloca-
ion of neural resources between SN and ECN using real-time fMRI neu-
ofeedback (rtfMRI-NF), as a potential mean to increase stress resilience.
ollowing a short localizer session from which subject-specific network
asks were defined, healthy participants were each engaged for three

eparate sessions in a bidirectional, implicit and intermittent rtfMRI-NF
aradigm in which the difference signal between the average activations
n the individualized SN and ECN masks was coupled to the size of a vi-
ual stimulus on the screen. Participants were not given any details of
his setup other than the instruction that they could learn to control the
ize of the stimulus with their brain . In a subsequent transfer session, par-
icipants performed the same bidirectional self-regulation task, but had
o apply their learned strategies in the absence of any feedback and, in
ddition, were exposed to an acute stressor (mild electric stimulation)
n some of the trials ( McMenamin et al., 2014 ). We hypothesized that
articipants are able to (1) learn to self-regulate SN-ECN activation bal-
nce, and (2) apply learned regulation strategies in (a) the absence of
eedback and (b) in prospect of an acute stressor. Through analysis of
articipants’ self-evaluation as well as additional exploration of whole-
rain activations during regulation, we aimed to gain further insights
nto how the tested group of participants achieved self-regulation of the
eedback signal. 

. Method 

.1. Participants 

Eleven healthy volunteers (6 females, 5 males; all recruited at Rad-
oud University and Radboud University Medical Centre, Nijmegen, the
etherlands) aged between 19 and 40 years (mean = 25.73; SD = 5.87)
articipated in the study in return for a monetary reward of 104–129 €.
ll of them had normal or corrected to normal vision and had no known
eurological or psychological disorders. Exclusion criteria included MRI
ontraindications, such as the presence of electronic or ferromagnetic
ody implants and a prior history of claustrophobia or panic attacks.
nly non-native speakers of English were included, to ensure that all
articipants were at approximately the same level of language profi-
iency when receiving instructions and answering questionnaires in En-
lish. Before the study, participants received general information about
MRI neurofeedback as well as study-specific information pertaining to
he scheduling of the study and a short description of the experimental
ask, and were informed that the three best performers over the whole
tudy would receive an extra monetary bonus of 25 €. Participants were
nstructed to refrain from the use of recreational drugs, have a good rest
he night before each experimental session, and to abstain from con-
uming caffeinated or alcoholic drinks, and smoking six hours prior to
ach experimental session. Due to technical problems, one participant
ad to be excluded after the second experimental session. The remain-
ng 10 participants (5 females, 5 males; between 19 and 40 years of
ge, mean = 25.80, SD = 6.18) completed all experimental sessions.
he study was approved by the local ethics committee, and participants
ave their written informed consent before the procedure. 

.2. Design 

The study consisted of five consecutive experimental sessions (see
ig. 1 ), each on a different day, with 1 to 19 days between the first
nd the second session (mean = 7.45, SD = 5.68), 1 to 16 days be-
ween the second and the third session (mean = 7.20, SD = 5.67), 1
nd 13 days between the third and the fourth session (mean = 5.60,
D = 4.09), and 1 and 7 days between the fourth and the fifth ses-
ion (mean = 4.30, SD = 2.63). The first session ( Localizer ) entailed an
natomical MRI recording, followed by two functional MRI runs (each
2 
00 volumes), with the first being a resting state run used for indi-
idualizing network templates, and the second being a passive view-
ng of pseudo-randomized presentations of five repetitions (each 10 s)
f the experimental stimuli used in later sessions to collect baseline
upil responses. Subsequently, a set of questionnaires was administered
utside the MR scanner. The following three sessions ( Training ) were
dentical to each other, and each comprised an anatomical MRI record-
ng, followed by seven to eight functional MRI neurofeedback runs
each 600 volumes). Each functional run consisted of a long rest phase
34 s) at the beginning, and 16 consecutive self-regulation attempts.
ach self-regulation attempt began with a “larger ” or “smaller ” regu-
ation block (16 s); indicating self-regulation direction; see also Stim-
li and Procedure below), followed by “delay ” (6 s), “feedback ” (4 s)
nd “rest ” (10 s) blocks. In the first and second run of the first Train-
ng session, all regulation blocks were of the condition “larger ” and
smaller ”, respectively, to familiarize participants with the paradigm,
hile all other runs consisted of an equal number of both conditions

n a pseudo-randomized order. The fifth and last session ( Transfer ) in-
olved an anatomical MRI recording, followed by four functional MRI
uns, and was included to examine if participants were able to ap-
ly learned strategies in the absence of feedback, as well as during
he presence of an acute stressor. The first three functional runs en-
ailed self-regulation without feedback (762, 710 and 736 volumes,
espectively), with a pseudo-randomized order of “larger ”, “smaller ”,
larger|threat ”, “smaller|threat ” and ”rest|threat ” blocks (each 16 s), in-
ermixed with “rest ” blocks (each 10 s). Over all three runs, 10% of the
hreat blocks ( “smaller ”|threat ”, “larger|threat ”, “rest|threat ”) were re-
laced by a shock block ( “smaller|shock ”, “larger|shock ”, “rest|shock ”),
espectively. “Threat ” and “shock ” variants of the blocks included a non-
einforced and reinforced threat of shock (mild electric stimulation; see
lso Stimuli and Procedure below). The first run included one replace-
ent for each of the three shock condition, equally spaced over the
hole run, with the “rest|shock ” block in the middle. In the second

un there was one replacement of “rest|shock ” block at approximately
he middle of the run. The last run included one replacement for each
rest|smaller ” and “rest|larger ” at the first and last quarter of the run,
espectively. The order of the two replacements for “rest|smaller ” and
rest|larger ” in the first and third run was counterbalanced over partici-
ants to control for order effects. The fourth and last functional run was
 resting-state run (300 volumes). 

. Materials 

.1. Questionnaires 

Administered questionnaires included the 60 item International
ersonality Item Pool NEO Questionnaire (IPIP-NEO-60; Maples-
eller et al., 2019 ), the behavioral inhibition system (BIS) and
ehavioral activation system (BAS) questionnaires ( Carver and
hite, 1994 ), the cognitive emotional regulation questionnaire

C.E.R.Q.; Garnefski et al., 2001 ), the trait component of the state-trait
nxiety inventory (STAI-trait) ( Spielberger et al., 1968 ), the thought
ontrol questionnaire (TCQ; Wells and Davies, 1994 ), and Beck’s depres-
ion inventory II (BDI-II; Beck et al., 1996 ). Questionnaires were part of
 standard battery to identify severely depressed participants (BDI-II),
nd to add to a larger body of explorative data for generating poten-
ial hypotheses for future studies (remaining questionnaires; see Tables
2–S6 in Supplementary Materials for individual scores). 1 
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Fig. 1. Overview of MRI runs during each of the five experimental sessions. Each session started with the acquisition of an anatomical recording (A). The first session 

(Localizer) included two short functional runs: passive viewing of the experimental stimuli (PV) and resting state (RS). The second session (Training 1) started with 

two functional runs in which participants were asked to either increase and decrease the circle, respectively, followed by up to six further runs in which they were 

asked to do both, in a mixed order, and participants received feedback after each attempt. The next two sessions (Training 2 and Training 3) each consisted of up to 

eight of these mixed runs. In the last session (Transfer) participants were asked to increase and decrease the size of the circle with the strategies learned during the 

training, but without receiving feedback and with the prospect of receiving a mild electric stimulation in 50% of the trials. The session ended with a resting state run. 
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.2. Stimuli 

Experimental stimuli were created and presented using Expyriment
version 0.9.0; Krause and Lindemann, 2014 ), running on a computer
esignated for stimulus presentation. The neurofeedback display con-
isted of a grey disc (red = 128, green = 128, blue = 128), superim-
osed with a black circle (red = 0, green = 0, blue = 0; visual angle of
adius = 5.96 °, visual angle of thickness = 0.07 °) as well as a black dot in
he center (red = 0, green = 0, blue = 0; visual angle of radius = 0.16 °).
he size of the grey disc was half between the size of the dot and the size
f the black circle (visual angle of radius = 3.06 °) during all blocks ex-
ept the feedback blocks, during which it could be anything in between
ize of the black circle and the size of the dot in the center (which turned
reen in this condition; red = 0, green = 255, blue = 0). During regula-
ion blocks, the grey disc was surrounded by four outward ( “larger ”)
r inward ( “smaller ”) pointing arrows at the top, bottom, left and right
ide (visual angle of width = 0.77 °, visual angle of height = 0.98 °; vi-
ual angle of distances between top and bottom as well as left and right
enters = 6.99 °) and the dot in the center turned orange (red = 255,
reen = 128, blue = 0). During threat blocks, the entire display was ad-
itionally surrounded by a red frame (red = 255, green = 0, blue = 0;
isual angle of height = 19.36 °, visual angle of width = 19.36 °, visual
ngle of thickness = 0.33 °). See Fig. 2 for an overview of used stimuli. 

.3. MRI data acquisition 

All MR images were recorded using a Siemens Skyra 3T MR
ystem (Siemens, Erlangen, Germany), with a 32-channel receiver
3 
ead coil. High-resolution 3D anatomical images were recorded
sing a T1-weighted magnetization-prepared rapid gradient echo
MPRAGE) sequence with a generalized autocalibrating partial par-
llel acquisition (GRAPPA) acceleration factor of 2 (repetition
ime/echo time = 2300/3.03 ms, flip angle = 8 °, field of
iew = 256 × 256 × 192 mm, resolution = 1.0 mm 

2 ). Functional im-
ges were acquired using a echo planar T2 ∗ -weighted sequence sen-
itive to BOLD contrast with a multiband acceleration factor of 4
repetition time/echo time = 1000/33 ms, flip angle = 60 °, field of
iew = 210 × 210 mm, number of slices = 52, slice thickness = 2.4 mm
no gap), in-plane resolution = 2.4 × 2.4 mm). During all scans, beside
ushioning around the head, a strip of medical tape was applied over
he forehead of the participants to reduce head motion ( Krause et al.,
019 ). 

.4. Real-time fMRI neurofeedback setup 

Real-time functional imaging was realized by implementing a cus-
om functor in the MR image reconstruction pipeline which exported
ixel data to an additional computer as soon as it becomes available.
urboExport (version 0.261, Brain Innovation, Maastricht, the Nether-

ands) was used to transform incoming pixel data for each volume into
n image. Each resulting image was preprocessed in real time using
urbo-BrainVoyager (version 4.0 beta; Brain Innovation, Maastricht, the
etherlands). Preprocessing included motion correction (by realigning
ach image to the first image of the session), as well as spatial smooth-
ng (Gaussian kernel of 5 mm full width at half maximum). The stim-
lation computer communicated with Turbo-BrainVoyager via a net-
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Fig. 2. Overview of experimental stimuli and design of the training (top) and transfer (bottom) sessions. (For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article). 
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ork connection, using the Transmission Control Protocol (TCP), in or-
er to request the preprocessed real-time data to generate the feedback
isplay. 

.5. Peripheral recordings 

Eye movements and pupil size of the left eye were recorded using
n Eyelink-1000 Plus eye-tracker (SR Research, Ottawa, Canada), with
 sampling rate of 500 Hz. Additionally, a BrainAmp ExG MR (Brain
roducts, Gliching, Germany) was used to measure heart rate with an
R-compatible pulse sensor (placed on left ring finger; Brain Products,
liching, Germany), respiration with an abdominal respiration belt (at-

ached to a pneumatic sensor, Brain Products; Gliching, Germany), and
alvanic Skin Response with two Ag/AgCl electrodes (placed on the
istal phalanges of the left index and middle fingers; Brain Products,
liching, Germany). 
4 
.6. Peripheral stimulation 

Mild electrical shocks were delivered via two electrodes attached to
he first and fifth finger of the right hand using a MAXTENS 2000 TENS
nit (Bio-Protech, Gangwon-do, Korea). Stimulation intensity varied be-
ween 0 V/0 mA and 40 V/80 mA. During a standardized adjustment
rocedure prior to the testing, each participant received and subjec-
ively rated five shocks, allowing stimulation strength to converge to
n individualized level that was experienced as uncomfortable, but not
ainful. 

. Procedure 

.1. Session 1: localizer 

After the recording of an anatomical image ( ≈ 5 min), participants
ere asked to look at a fixation cross at the centre of the screen, while a

esting-state functional data-set was recorded ( ≈ 6 min). Subsequently,
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Fig. 3. Example output of procedure to indi- 

vidualize SN (red) and ECN (blue) network 

templates (top) to subject-specific network 

masks (bottom; data from participant 11, back- 

projected from native space to MNI space). For 

individualized network templates of all partic- 

ipants see Fig. S1 in Supplementary Materials. 

(For interpretation of the references to color in 

this figure legend, the reader is referred to the 

web version of this article). 
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he eye-tracker was calibrated and another short functional data-set was
ecorded while participants were asked to passively look at the stimuli
hat were used in the later parts of the study ( ≈ 5 min). For the pur-
ose of having a baseline pupil size for each of the stimuli, pupil size
as recorded during this run. Once the tasks in the scanner were con-

luded, participants were asked to complete a set of questionnaires (see
aterials). 

The anatomical image and resting-state data-set were used after the
ession to create individualized network masks to be used as neurofeed-
ack target regions during the subsequent training and transfer sessions.
sing a custom-made Nipype (version 1.1.8; Gorgolewski et al., 2011 ,
017 ) pipeline ( https://github.com/can-lab/IndNet ), functional images
ere realigned to the first volume of the run, spatially smoothed (Gaus-

ian kernel of 5 mm full width at half maximum), cleaned from head-
otion artefacts using ICA-AROMA ( Pruim et al., 2015 ), and high-pass
ltered (filter size = 100 s). The anatomical image underwent brain ex-
raction and segmentation into grey matter (GM), white matter (WM)
nd cerebro-spinal fluid (CSF) binary masks. Binary masks of 14 intrin-
ic connectivity networks (ICN; Shirer et al., 2012 ) were transformed
nto native space, multiplied with the GM mask, and the results were
sed to extract 14 timecourses (first eigenvariate of each ICN) from the
leaned data. In addition, the WM and CSF masks were used to extract
verage (mean) WM and CSF timecourses from the cleaned data. ICN,
M and CSF timecourses entered a generalized linear model (GLM) in
hich contrasts reflecting combinations of ICN regressors specifying SN

anterior and posterior), ECN (left and right) as well as the default mode
etwork (DMN; dorsal and ventral) were estimated and thresholded us-
ng spatial mixture modeling (threshold level = 0.66). Eventually, SN,
CN and DMN binary masks were created by only considering voxels
hat occurred exclusively in either of the thresholded maps and trans-
ormation into native anatomical voxel space. Resulting masks were im-
orted into BrainVoyager (version 21.0, Brain Innovation, Maastricht,
he Netherlands), transformed to be iso-voxeled and a BrainVoyager
oxels-of-interest (VOI) definition was created for each mask. Fig. 3
hows an example of individualized SN and ECN network templates
a  

5 
or one participant (see Supplementary Materials for individualized net-
ork templates of all participants). 

.2. Sessions 2, 3 and 4: training 

At the beginning of the first Training session oral instructions about
he task and outline of the session were given outside of the scanner.
or the regulation task, participants were asked to attempt to either in-
rease or decrease the size of the disc on the screen with their brain, de-
ending on the orientation of the surrounding arrows in each trial. They
ere told that they could achieve this by thinking of something specific,
erforming some mental task internally, or getting into a certain mood,
motion, feeling, or state of mind, and that they had to explore different
ental strategies to find one that works for them. They were not made

ware of either the origin and computation of the feedback signal, or
he details of the study. Before each session, participants were explic-
tly asked to try to avoid movement, including facial movements, limb
ovements and irregular breathing patterns. Inside the scanner, first an

natomical image was recorded ( ≈ 5 min) and preprocessed immedi-
tely after reconstruction on a separate computer using BrainVoyager
version 21.0, Brain Innovation, Maastricht, the Netherlands). Prepro-
essing included intensity inhomogeneity correction, iso-voxeling, and
rain extraction. Preprocessed anatomical images were further coreg-
stered to the anatomical image of the first (localizer) session, and re-
ults were supplied to Turbo-BrainVoyager to have real-time functional
ata in alignment with the neurofeedback target ROIs. Parallel to the
natomical preprocessing, the eye-tracker was calibrated. Subsequently,
articipants were engaged in seven (session 4 of participant 3, session 3
f participant 6, session 4 of participant 7) to eight (all other sessions)
eal-time fMRI neurofeedback training runs (each ≈ 10 min). The main
otivation for splitting the sessions into multiple short runs was to offer
articipants self-paced rest periods (in between runs). Each run started
ith a rest phase during which the baseline and initial display bound-
ries for the feedback signal (i.e. smallest and largest disc size) were
alculated. Feedback was based on the difference signal between the
verages (mean) of all voxels in the SN and ECN ROIs, with the direc-

https://github.com/can-lab/IndNet
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ion being alternated between participants (participants 1, 3, 5, 7, 9, 11:
N - ECN; participants 2, 4, 6, 8, 10: ECN - SN). Notably, all participants
ere still engaged in bidirectional self-regulation, and this alternation
nly ensured a counter-balancing in the way the direction of a network
alance change (i.e. toward SN or toward ECN) was coupled to the feed-
ack display (i.e. larger or smaller). While the participants receiving SN -
CN feedback were slightly younger (24.5 years, SD = 4.68) than those
eceiving ECN - SN feedback (27.2 years, SD = 7.33), that difference
as not significant, t(9) = 0.74, p = 0.48, d = 0.44. 2 The baseline for

his difference signal was defined as the average (median) difference
etween SN and ECN during the initial rest phase, and the initial lower
nd upper display boundaries were set to two standard deviations from
his baseline. These limits were updated before each regulation block
o the average (median) of the five lowest/highest difference values in
hat run. For each regulation block, positive and negative changes in the
ifference signal resulted in a feedback value between -1 and 1 by ap-
lying the following calculation (values lower than -1 and higher than
 were set to -1 and 1, respectively): 

𝑒𝑒𝑑𝑏𝑎𝑐 𝑘 𝑠𝑚𝑎𝑙 𝑙 𝑒𝑟 = 

𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝑙 𝑖𝑚𝑖 𝑡 𝑙𝑜𝑤𝑒𝑟 − 𝑏𝑎𝑠𝑒𝑙 𝑖𝑛𝑒 
(1)

𝑒𝑒𝑑𝑏𝑎𝑐 𝑘 𝑙𝑎𝑟𝑔𝑒𝑟 = 

𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝑙 𝑖𝑚𝑖 𝑡 𝑢𝑝𝑝𝑒𝑟 − 𝑏𝑎𝑠𝑒𝑙 𝑖𝑛𝑒 
(2)

Due to the characteristics of the delayed haemodynamic response,
alculations did not consider the first six volumes of each block, but
ncluded the first two volumes of the following block. The feedback
ence represented the average regulation performance during each reg-
lation block and was given intermittently during the subsequent feed-
ack block. The feedback value was furthermore used to calculate the
mount of points a participant collected. For each regulation block, an
mount of points proportional to the feedback value was given rang-
ng from 0 points, when the difference signal changed in the opposite
irection than instructed, and 100 points when the specified limit was
eached. These points were accumulated after each regulation block,
nd the total was presented to the participant in the end of each. Af-
er each run, participants were asked to verbally rate their degree of
ontrol over the disc size as well as the difficulty of the regulation in
ither direction on a scale from 0 to 10. In between runs, participants
ould take a short break (inside the scanner), if needed. At the end of
he session and outside the scanner, participants were asked to write
own the strategies they used, if they thought these strategies worked
nd whether they would use them again in the next session. 

.3. Session 5: transfer 

After the standardized stimulation intensity adjustment an anatom-
cal image was recorded and the eye-tracker was calibrated. The subse-
uent three functional runs were similar to the feedback runs in previous
essions, but differed in two ways: (1) no feedback was given to the par-
icipant about their regulation performance, and (2) during 50% of all
est and regulation blocks, there was the chance (11.8% across all three
uns) of a mild electrical stimulation of the fingers at any time during
he block. Participants were told to apply those strategies to increase
nd decrease the size of the disc that they thought worked best during
he training, and that they were still collecting points. In the last run of
he session a functional resting-state data-set was recorded while partici-
ants were asked to look at a fixation cross at the centre of the screen. At
he end of the session and outside the scanner, participants were asked
bout any thoughts they would like to share about their participation,
fter which they were debriefed and informed about the details of the
tudy. 
2 Notably, whether a participant received SN - ECN or ECN - SN feedback did 

ot affect our main outcome measure of self-regulation performance in any of 

he sessions (all |t| < 1). 

“  

t  

i  

t  

3  

6 
.4. Data analysis 

.4.1. Self-evaluation 
Perceived controllability of the feedback signal as well as perceived

ifficulty to control the signal in either direction specifically were as-
essed for each training session by averaging the scores across all runs
f that session. Expected increase in perceived controllability from first
o last training session, as well as decreased perceived difficulty in both
egulation directions, were each tested for with a one-sided paired t -test.
nalyses were performed using Pingouin (version 0.3.8; Vallat, 2018 ). 

.4.2. Peripheral recordings 
Bandpass filtering (0.3–3 Hz) was applied to raw pulse and res-

iratory recordings to remove low-frequency drifts, artefacts time-
ocked to the MR volumes were removed from the data via deconvo-
ution, and automatic peak detection was applied to the pulse data,
sing a custom tool ( https://github.com/can-lab/brainampconverter ).
ata was further visually inspected and corrected, using a custom tool
 https://github.com/can-lab/hera ). Periods rejected due to data qual-
ty were removed and data were interpolated. The processed pulse and
espiratory data were then used for retrospective image-based correc-
ion of physiological noise artefacts in the MRI data, using a custom
ool ( https://github.com/can-lab/RETROICORplus ). This method uti-
izes 5th order Fourier modeling of cardiac and respiratory phase re-
ated noise. A total of 25 nuisance regressors were created, includ-
ng 10 cardiac phase regressors and 10 respiratory phase regressors
RETROICOR; Glover et al., 2000 ), plus 3 heart rate frequency regres-
ors ( Shmueli et al., 2007 ; van Buuren et al., 2009 ), and 2 respiratory
olume per unit time regressors ( Birn et al., 2006 ; van Buuren et al.,
009 ). 

Skin conductance data recorded during the Transfer session were
own-sampled to 100 Hz and high-pass filtered (cutoff = 5 Hz). Contin-
ous Decomposition Analysis on the first 10 s of each block was then
erformed in Ledalab ( Benedek and Kaernbach, 2010 ), in order to ex-
ract tonic and phasic components of the skin conductance amplitude.
o test whether the threat of a mild electric shock led to an expected
verall increase in skin conductance, compared to not receiving a shock,
he standardized (z-transformed) average phasic amplitude of the ini-
ial ten seconds of each block was calculated and subsequently entered
nto a one-sided paired t-test. In case of a significant overall effect, the
xpected increase was further assessed by post-hoc one-sided paired t-
ests in each condition (rest, regulate to SN [participants 3, 5, 7, 9, 11:
larger ”; participants 2, 4, 6, 8, 10: “smaller ”], regulate to ECN [par-
icipants 3, 5, 7, 9, 11: “smaller ”; participants 2, 4, 6, 8, 10: “larger ”])
ndividually. Potential differences in the strength of the threat effect be-
ween conditions was furthermore tested by the interaction effect in a
 × 2 repeated measures ANOVA with the factors condition (rest, regu-
ate to SN, regulate to ECN) and threat (threat, safe). 

Average baseline pupil dilation in response to each stimulus was cal-
ulated from data acquired in the Localizer session. The average pupil
ize of the first 10 s of each rest and regulation block was then cal-
ulated for the Transfer session and z-transformed, from which the z-
ransformed average baseline was subtracted, to avoid pupil dilation
ifferences driven by changes in luminance between stimuli. Periods re-
orted as blinks by the eye-tracker (pupil data missing for three or more
amples in a sequence) were not considered. To test whether the threat
f a mild electric shock led to an overall increase in pupil size, compared
o not receiving a shock, baseline-corrected data was subsequently en-
ered into a one-sided paired t-test. In case of a significant overall effect,
he expected increase was further assessed by post-hoc one-sided paired
-tests in each condition (rest, regulate to SN [participants 3, 5, 7, 9, 11:
larger ”; participants 2, 4, 6, 8, 10: “smaller ”], regulate to ECN [par-
icipants 3, 5, 7, 9, 11: “smaller ”; participants 2, 4, 6, 8, 10: “larger ”])
ndividually. Potential differences in the strength of the threat effect be-
ween conditions was furthermore tested by the interaction effect in a
 × 2 repeated measures ANOVA with the factors condition (rest, regu-

https://github.com/can-lab/brainampconverter
https://github.com/can-lab/hera
https://github.com/can-lab/RETROICORplus
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o  
ate to SN, regulate to ECN) and threat (threat, safe). Skin conductance
nd pupil size analyses were performed using Pingouin (version 0.3.8;
allat, 2018 ). 

.4.3. SN-ECN balance self-regulation performance 
The first two runs of the first training session were considered to

e practice runs (for the participants to get used to the setting) and
ere not analysed further. For each remaining functional run, the differ-

nce signal between SN and ECN timecourses (as extracted online with
urbo-BrainVoyager) was high-pass filtered (cutoff = 0.01 Hz/100 s)
nd normalized (z-transformation). Due to technical problems, partici-
ants 8 and 9 both received inaccurate feedback during a single run of
ession 2, and the corrected SN and ECN timecourses for this analysis
ere extracted post-hoc. For each participant, the concatenated prepro-

essed difference signals of all runs of all sessions then entered a gen-
ralized linear model (GLM), corrected for serial correlations by means
f a first order autoregressive model (AR1), with 29 regressors mod-
ling the expected hemodynamic responses (double gamma function)
uring the different blocks of the experimental design in each session
i.e. the regulation conditions “larger ” and “smaller ”, the “delay ” pe-
iod, and “feedback ” for each regulation condition in each of the train-
ng sessions, as well as the regulation conditions “larger ”, “smaller ”,
larger|threat ”, “smaller|threat ”, “rest|threat ”, and regressors for rein-
orced threat blocks describing the periods before and after a shock, as
ell as the shock itself, for the transfer session). An additional set of 49

egressors per run was added as covariates: six motion parameters from
urbo-BrainVoyager (three translational and three rotational), their first
emporal derivative as well as the quadratic terms of both the base mo-
ion parameters and their temporal derivatives, and 25 physiological
oise components. Self-regulation performance in each session was as-
essed by estimating the difference contrast “regulate to SN > regulate
o ECN ” (participants 3, 5, 7, 9, 11: “larger > smaller ”; participants 2, 4,
, 8, 10: “smaller > larger ”) corresponding to that session. In line with
ur hypotheses, the following planned contrasts were tested for signif-
cance: (1) the difference contrast across all sessions, to test for overall
ontrol over the feedback signal, (2) the difference contrast in the trans-
er session, to test specifically for preserving that skill after training, in
he absence of feedback, (3) a contrast corresponding to a positive linear
rend in the difference contrast over sessions, to test for improvement
ver time, and (4) a contrast testing whether the effect of the difference
ontrast in the transfer session was smaller in the “threat ” condition,
ompared to the “safe ” condition. To assess random effects across par-
icipants, contrast estimates of all participants where tested for signif-
cance with a one-sample t -test. The significance level for all tests was
et to 𝛼 = 0.05. Analyses were performed using NiPy (version 0.4.2;
illman and Brett, 2007 ) and Pingouin (version 0.3.8; Vallat, 2018 ). 

.4.4. Whole-brain voxel-wise analysis 
To further explore how the self-regulation of SN-ECN balance af-

ected global brain activations in the here tested group of partici-
ants, additional whole-brain voxel-wise offline fMRI analysis has been
erformed. All MR image were preprocessed with FMRIPREP ver-
ion 1.5.8 ( Esteban et al., 2018 , 2020 ; RRID:SCR_016216), a Nipype
 Gorgolewski et al., 2011 , 2017 ; RRID:SCR_002502) based tool. Each
1w (T1-weighted) volume was corrected for INU (intensity non-
niformity) using N4BiasFieldCorrection v2.1.0 ( Tustison et al., 2010 )
nd skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS
emplate). Spatial normalization to the ICBM 152 Nonlinear Asymmet-
ical template version 2009c ( Fonov et al., 2009 ; RRID:SCR_008796)
as performed through nonlinear registration with the antsRegistra-

ion tool of ANTs v2.1.0 ( Avants et al., 2008 ; RRID:SCR_004757), using
rain-extracted versions of both T1w volume and template. Brain tis-
ue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and
ray-matter (GM) was performed on the brain-extracted T1w using fast
 Zhang et al., 2001 ; FSL v5.0.9; RRID:SCR_002823). 
7 
Functional data was motion corrected using mcflirt (FSL v5.0.9;
enkinson et al., 2002 ). This was followed by co-registration to the
orresponding T1w using boundary-based registration ( Greve and Fis-
hl, 2009 ) with six degrees of freedom, using flirt (FSL). Motion correct-
ng transformations, BOLD-to-T1w transformation and T1w-to-template
MNI) warp were concatenated and applied in a single step using antsAp-
lyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Many internal operations of FMRIPREP use Nilearn
 Abraham et al., 2014 ; RRID:SCR_001362), principally within the
OLD-processing workflow. For more details of the pipeline see
ttps://fmriprep.readthedocs.io/en/latest/workflows.html . 

FMRIPREP-preprocessed functional runs were further spatially
moothed (5 mm FWHM) and temporally high-pass filtered (cut-
ff = 0.01 Hz/100 s), using a custom-made Nipype (version 1.4.2;
orgolewski et al., 2011 , 2017 ) pipeline ( https://github.com/can-lab/
nish- the- job ). 

The first two runs of the first training session were considered to
e practice runs (for the participants to get used to the setting) and
ere not analysed further. Each of the remaining runs was median-

caled to a value of 10000, and all voxels exceeding a threshold of 1000
ntered a pre-whitened generalized linear model (GLM; FILM_GLS
rom FSL version 6.0.1; Smith et al., 2004 ) with five regressors mod-
ling the expected hemodynamic responses (double gamma function)
uring the different blocks of the experimental design (the regulation
onditions “larger ” and “smaller ”, the “delay ” period, as well as “feed-
ack ” for each regulation condition). An additional set of 49 regres-
ors per run was added as covariates: 24 motion parameters from FM-
IPREP (three translational and three rotational, their first temporal
erivative, as well as the quadratic terms of both base motion param-
ters and their derivatives) and 25 physiological noise components.
irst-level contrasts corresponding to “regulate to SN ” (participants 3,
, 7, 9, 11: “larger ”; participants 2, 4, 6, 8, 10: “smaller ”), “regulate
o ECN ” (participants 3, 5, 7, 9, 11: “smaller ”; participants 2, 4, 6,
, 10: “larger ”), and “regulate to SN > regulate to ECN ” (participants
, 5, 7, 9, 11: “larger > smaller ”; participants 2, 4, 6, 8, 10: “smaller
 larger ”), were estimated and averaged across all runs of one train-

ng session in a single-regressor second/intermediate-level fixed-effects
LM ( FLAMEO from FSL; version 6.0.1; Smith et al., 2004 ). The trans-

er session was analysed in the same way, with additional regressors
or the conditions “larger|threat ”, “smaller|threat ”, “rest|threat ”, and
egressors for reinforced threat blocks describing the periods before and
fter a shock, as well as the shock itself, for the transfer session, and addi-
ional contrasts for each regulation direction and the difference between
hem were estimated for safe and threat conditions independently. Ses-
ion estimates then entered several third/group-level fixed-effects GLMs
 FLAMEO from FSL version 6.0.1; Smith et al., 2004 ): (1) four single-
egressor models to test for main effects of each session, (2) a model with
ne regressors describing a positive linear relationship across sessions
nd 10 regressors describing subject effects (to test for improvements
ver time), as well as (3) a model with one regressor describing the dif-
erence between safe and threat conditions in the transfer session and
0 regressors describing subject effects. Results were family-wise error
FWE) corrected for multiple comparisons on the single voxel level, and
hresholded at a 𝛼 = 0.05. Analyses were performed using a custom-
ade Nipype (version 1.4.2; Gorgolewski et al., 2011 , 2017 ) pipeline

 https://github.com/can-lab/FawN ). 

.4.5. Functional connectivity 
While the neurofeedback signal in the current study was based on

he difference between the activation of SN and ECN, successful self-
egulation might also have an effect on the reciprocity between the two
etworks. To test for changes in functional connectivity between SN
nd ECN, their timecourse correlation during the resting-state run in
he first session (Localizer; pre training) was compared to that of the
ast session (Transfer; post training). Timecourses (first eigenvariate)
f SN and ECN were extracted from FMRIREP-preprocessed data (see

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://github.com/can-lab/finish-the-job
https://github.com/can-lab/FawN
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Fig. 4. SN-ECN balance self-regulation performance per session for each participant individually (top) and for all participants as a group (bottom). On average, 

participants gained significant control over the feedback signal, irrespective of being threatened or not, and demonstrated consistent improvement during acquisition 

of this skill. Error bars represent 95% bootstrapped confidence intervals, and indicate significance when they do not encompass zero. ∗ : p < 0.05, n.s.: not significant. 

a  

n  

t  

s  

(  

p  

c  

s  

p  

p  

d  

t  

s  

t

4
 

s  

e  

a  

P  

R  

l

5

5

 

bove), using combined anterior/posterior SN and combined left/right
etwork masks from previous literature ( Shirer et al., 2012 ). Prior to ex-
raction, standard functional connectivity preprocessing steps to reduce
purious variance unlikely to reflect functional activity were applied
c.f. Fox et al., 2005 ). Data was normalized (z-transformation), band-
ass filtered (0.009–0.08 Hz), spatially smoothed (5 mm FWHM), and
onfounds, estimated by 36 confound predictors from FMRIPREP (de-
cribing three translational motion parameters, three rotational motion
arameters, a white-matter signal, a cerebro-spinal fluid, their first tem-
oral derivative, as well as the quadratic terms of all predictors and their
erivatives), removed by means of regression. Pearson correlations be-
ween the extracted timecourses of each participant in the first and last
ession were Fisher z-transformed and entered into a two-tailed paired

 -test. 

i  

8 
.4.6. Data and code availability 
Scripts used during real-time neurofeedback training, as well as

cripts for reproducing the reported self-regulation performance, self-
valuation, peripheral recordings, and full-brain analyses are openly
vailable in the Open Science Framework at https://osf.io/sh2ck .
seudonymized data will be available on request from the Donders
epository at https://data.donders.ru.nl l. Raw MR images are not pub-

icly available due to privacy or ethical restrictions. 

. Results 

.1. SN-ECN balance self-regulation performance 

Fig. 4 shows self-regulation performance per session for each partic-
pant individually (top) as well as for the group of all participants (bot-

https://osf.io/sh2ck
https://data.donders.ru.nl
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om). Most importantly, and in line with our hypothesis, participants
ained significant differential control (i.e. between the two regulation
irections) of the feedback signal, both, across all sessions, t (9) = 4.80,
 < 0.001, d = 1.52, as well as during the transfer session, without feed-
ack, in particular, t (9) = 3.38, p < 0.01, d = 1.07. This skill was even
ignificantly demonstrable on an individual level for 8/10 and 7/10 par-
icipants, respectively (see Supplementary Materials for detailed indi-
idual results). Participants furthermore showed a linear improvement
n self-regulation performance over time, from the first training session
o the transfer session, t (9) = 2.81, p < 0.05, d = 0.89. No significant dif-
erence between differential self-regulation performance in the “safe ”,
ompared to the “threat ” condition of the transfer session could be ob-
erved, t (9) = 1.05, p = 0.16, d = 0.33, and confidence intervals indicate
ignificant differential control in both conditions. 
ig. 5. Pupil dilation in the Transfer session for each participant individually (top

timulation significantly increased overall pupil size, but to different degrees in each

.s.: not significant. 

9 
.2. Self-evaluation 

There was a significant increase in the ratings of perceived control
f the feedback signal from the first training session (3.91) to the last
4.71), t (9) = 2.06, p < 0.05, d = 0.42. A significant decrease in the
ating of perceived regulation difficulty was observed when regulating
o ECN (first training session: 7.66, last training session: 5.72), t (9) = -
.68, p < 0.001, d = 1.08, but not when regulating to SN (first training
ession: 5.77, last training session: 6.21), t (9) = 0.90, p = 0.80, d = 0.34.
articipants’ strategies to regulate to SN included focusing on emotional
emories/thoughts ( n = 5), imagery of size changes ( n = 3), as well as

efocusing covert attention away from the task ( n = 2). Strategies to reg-
late to ECN included focusing on positive memories/relaxing thoughts
 n = 5), imagery of size changes ( n = 3), as well as mental calculation
) and for all participants as a group (bottom). The threat of a mild electric 

 task. Error bars represent 95% confidence intervals. ∗ ∗ : p < 0.01, ∗ : p < 0.05, 
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Fig. 6. Full-brain activations of the tested group of participants during self-regulation in each of the four sessions. Participants learned to regulate the difference 

signal mainly via SN and ECN (but also DMN) manipulation, and especially by actively deactivating SN when asked to regulate to ECN. Only significant voxels (p FWE 

< 0.05) are shown. MNI coordinates: x = 0, y = 7, z = 42. 
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 n = 2). For a full overview of individuals’ ratings and strategies per
ession see Table S1 in Supplementary Materials. 

.3. Physiological threat response 

Fig. 5 shows pupil responses in the transfer runs. Overall, normalized
upil size showed the expected sympathetic response to the stressor,
 (9) = 3.16, p < 0.01, d = 1.89, with larger pupil size during threat blocks
0.42 SD) than during safe blocks (-0.34 SD), validating the experimental
anipulation. Post-hoc tests indicated this effect to be significant during

oth rest, t (9) = 3.21, p < 0.01, d = 1.77, and when regulating towards
CN, t (9) = 2.13, p < 0.05, d = 1.04, but not when regulating towards
N, t (9) = 0.82, p = 0.23, d = 0.46. The difference in the effect between
onditions was not significant, F (2,18) = 3.45, p = 0.054, 𝜂p 

2 = 0.28. 
Overall, the same pattern was observed for standardized average

hasic skin conductance amplitude in the transfer runs, which was 0.14
D larger during threat blocks than during safe blocks, t (9) = 2.17,
 < 0.05, d = 0.99. Post-hoc tests indicated that this effect reached signif-
cant only when regulating towards ECN, t (9) = 2.72, p < 0.05, d = 1.30,
ut not when regulating towards SN, t (9) = 1.39, p = 0.10, d = 0.70, or
uring rest, t (9) = 1.74, p = 0.06, d = 0.73. The difference in the ef-
ect between conditions was not significant, F (2,18) = 0.38, p = 0.69,

p 
2 = 0.04. 

.4. Whole-brain voxel-wise analysis 

Fig. 6 shows an overview of the whole-brain voxel-wise effects of
elf-regulation in each of the four sessions, corrected for family-wise
rror. Regulating SN-ECN balance to either side positively activated a
arge set of regions associated with SN (including supplementary mo-
or area, anterior cingulate cortex, supramarginal gyrus, insula, amyg-
ala, hippocampus, dorsal striatum, thalamus), and negatively acti-
ated a large set of regions associated with ECN (including middle
10 
rontal gyrus, angular gyrus) and DMN (including posterior cingulate
yrus, precuneus, paracingulate gyrus). Descriptively, participants in-
reasingly learned to differentially activate SN, but also part of DMN,
etween the two regulation conditions. Results of the contrast specif-
cally testing for an improvement over time confirm this pattern, and
urther indicated that while participants did improve in increasingly ac-
ivating SN when asked to regulate to SN, they mainly learned to ac-
ively deactivate SN when asked to shift SN-ECN balance in the other
irection. Tables S7–S9 (Supplementary Materials) provide the full list
f regions whose activation changed positively or negatively over time,
or differential regulation, regulation to SN and regulation to ECN, re-
pectively. 

Fig. 7 a shows the whole-brain voxel-wise effects of threat in the
ransfer session, corrected for family-wise error. Overall, being threat-
ned with a mild electric stimulation led to an increase in activation of
N regions and visual brain areas, as well as a decrease in activation
f ECN and DMN regions (see Table S10 in Supplementary Materials
or the full list of regions). This effect was more pronounced in the two
egulation conditions, compared to the rest condition. Fig. 7 b shows the
ffects of threat on self-regulation in particular. Self-regulating to ei-
her direction, when being threatened with a mild electric shock, led to
ocal increases in activation of visual brain areas, insular cortex, supe-
ior frontal gyrus and posterior cingulate cortex, compared to not being
hreatened (see Tables S11 and S12 in Supplementary Materials for the
ull list of regions). However, in the differential contrast between the
wo regulation directions, only a single voxel in the middle frontal gyrus
as significantly more activated when being threatened, compared to
hen not being threatened. 

.5. Functional connectivity 

Fig. 8 shows the Pearson correlation of each between SN and ECN
f each participant in the first (Localizer) and last (Transfer) session.
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Fig. 7. Full-brain activations during self-regulation in the transfer session. a) Being threatened with a mild electric shock led to an increase in SN activation, as well 

as decreases in ECN and DMN activation. (b) The threat affected self-regulation in both directions equally. Only significant voxels (p FWE < 0.05) are shown. MNI 

coordinates: x = 0, y = 30, z = 3. 
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tatistical analysis on the Fisher z-transformed data showed a significant
ositive change of on average 0.74 in the correlation between SN and
CN from the first session (Localizer; before the training) to the last
ession (Transfer; after the training), t (9) = 2.74, p < 0.05, d = 0.90. 

. Discussion 

The current study is a first investigation of the general feasibility to
se rtfMRI-NF to train the self-regulation of stress-related large-scale
etwork balance. Our results show that, given intermitted feedback
bout their performance over three training sessions, participants were
ell capable to learn to differentially control the balance between SN
nd ECN activation, both as a group, as well as individually. 

Crucially, participants were able to successfully transfer this newly
earned skill to a situation where they did not receive any feedback any-
ore. Unlike other forms of neuromodulation which externally change
eural parameters at the time of application or aim for long-term ef-
ects via plasticity changes ( Johnson et al., 2013 ), neurofeedback also
llows individuals to learn mental strategies that they can voluntarily
11 
pply themselves at a later point in time after the training. While partic-
pants in the current study used very different mental strategies, ranging
rom emotion induction to exerting cognitive control, they were all able
o explicitly describe their chosen strategies afterwards and seemed to
e aware of their self-regulation success. In addition to transferring the
earned self-regulation strategies beyond the training, participants were
lso capable to apply them under acute stress (in form of a threat of
ild electric stimulation). The threat of mild electric stimulation led to
 significant overall increase in both pupil size and skin conductance,
ompared to periods without this threat, validating that, in line with
revious research ( Phelps et al., 2001 ), the threat was perceived as an
cute stressor. This effect, while descriptively present in all conditions,
id not reach statistical significance in each of them individually (prob-
bly due to the small size of the current sample), but there was also no
vidence that the effect significantly differed between conditions. 

Whole-brain voxel-wise fMRI analysis confirmed that participants re-
ruited large-scale networks of brain areas in SN and ECN, but also DMN,
uring their self-regulation attempts. Notably, participants’ attempts to
egulate SN-ECN balance in either direction seem to have led to a gen-



F. Krause, N. Kogias, M. Krentz et al. NeuroImage 243 (2021) 118527 

Fig. 8. Changes in SN-ECN functional connectivity (Pearson correlation) be- 

tween the first (Localizer) session and the last session (Transfer) for each par- 

ticipant. 
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ral shift of network balance toward SN, with strong SN activation and
CN (and DMN) deactivation, compared to rest. We also consistently
bserved this pattern in the online feedback signal during the training
essions. There are multiple possible explanations for this observation.
t has previously been shown that increases in cognitive effort as well as
eward anticipation recruit overlapping networks of brain areas within
N ( Vassena et al., 2014 ). Reward processing networks are known to
e part of the neural substrates of neurofeedback-based self-regulation,
ogether with other SN and ECN areas, involved in the conscious per-
eption of feedback and reward, and executive aspects of the regulation
asks, respectively ( Sitaram et al., 2017 ). Furthermore, an increase in
ognitive effort during regulation attempts might have led to height-
ned sympathetic arousal ( Westbrook and Braver, 2015 ), resulting in
etwork balance shifts similar to acute stressors ( Young et al., 2017 ).
lternatively, the pressure to perform self-regulation on cue within a

imited time period might have simply been perceived as an acute stres-
or. The results of the threat manipulation in both whole-brain fMRI as
ell as pupil data seem to be in line with this interpretation. The pupil
ata in the transfer session showed visibly increased dilation during reg-
lation blocks, compared to safe blocks (see Fig. 5 ). The difference was
ore pronounced in the safe condition than in the threat condition,
ossibly due to pupil size ceiling effects when regulating under threat.
ikewise, whole-brain voxel-wise fMRI data showed that while threat
n general led to increases in SN activation and decreases in ECN and
N activation, these neural effects were largely driven by the regulation

onditions (which appeared to be equally affected by the threat). 
Importantly, however, despite a general shift towards SN, whole-

rain voxel-wise fMRI analysis showed that participants were able to
earn over time to suppress SN activation when regulating towards ECN,
nd continued to do so in the transfer session. This is also reflected in
he self-evaluation results which indicated that participants, while gen-
rally aware of their improvement in self-regulation over time, only per-
eived a decrease in the difficulty to regulate to ECN over time. From
 clinical perspective, the ability to voluntarily regulate network bal-
nce away from SN is particularly relevant, as it might allow patients
ith stress-related disorders to actively counteract the automatic stress-

nduced shifts towards SN ( Hermans et al., 2014 ). Future research apply-
ng this novel network-based neurofeedback approach to corresponding
12 
atient populations will be needed to test this hypothesis. It should be
oted that, due to the explorative nature of the whole-brain voxel-wise
MRI analysis and the focus on understanding how the group of tested
articipants in the current study achieved self-regulation of the network
alance, fixed effects analysis was performed. In contrast to the other
nalyses reported, the conclusions drawn from this analysis are hence
ot generalizable beyond the current sample. 

Interestingly, we also observed a positive change in resting-state
unctional connectivity between SN and ECN after the training, com-
ared to before. This result, however, has to be interpreted very care-
ully, as it does not necessarily imply that the neurofeedback training led
o structural post-training connectivity changes. First, the two resting-
tate runs were acquired at different time points during the MRI ses-
ion. In the localizer session, the resting-state run followed immedi-
tely after the initial anatomical scan, and was hence acquired after
 min of lying passively in the scanner. In the transfer session, how-
ver, the resting-state run was acquired at the end of the session, af-
er participants have been in the scanner for approximately 45 min.
econd, the resting-state run in the transfer session followed immedi-
tely after participants have been actively regulating SN-ECN balance
hile additionally being threatened with the prospect of a mild elec-

ric stimulation in half of their regulation attempts. It is hence not un-
ikely that the connectivity changes observed in the resting-state run
f the transfer session are sustained effects of the previous run, and
hile those might relate to self-regulating SN-ECN activation balance,

hey might also relate to the threat anticipation, which is known to af-
ect the connectivity between nodes in SN and ECN ( Bijsterbosch et al.,
015 ; McMenamin et al., 2014 ). Future research, specifically targeting
he question of how activation-based network-balance neurofeedback
raining affects network connectivity, is needed to give a more conclu-
ive answer. 

The neurofeedback approach in the current study differs consid-
rably from the majority of previous rtfMRI-NF paradigms, in that it
oes neither target only the activation of a single isolated brain area
 Thibault et al., 2017 ; Sulzer et al., 2013 ), nor the functional connectiv-
ty between two individual areas ( Thibault et al., 2017 ; Watanabe et al.,
017 ). We here specifically targeted the difference in activation be-
ween two functionally different actors (c.f. Scharnowski et al., 2015 ).
nlike Scharnowski and colleagues (2015) , however, we focus on the
alance between two large-scale brain networks that each consist of
ultiple brain areas and are functionally related. While self-regulation

ased on feedback from specific individual regions within the these net-
orks has been trained in the past (e.g. Hamilton et al., 2016 ), and

t has been shown that such feedback can also lead to more global
hanges within the same or other networks (e.g. Mayeli et al., 2020 ),
e took a different approach, in line with three other recent neuro-

eedback studies that targeted entire large-scale brain network balance
 Kim et al., 2019 ; Pamplona et al., 2020 ; Bauer et al., 2020 ). While
im et al. (2019) targeted changes in functional connectivity between
N and DMN, Pamplona et al. (2020) as well as Bauer and colleagues
2020) took an approach similar to ours and targeted the difference in
he activation between the sustained attention network and DMN as well
s ECN and DMN, respectively. Notably, however, the current study
lso differs to those studies by focusing on the stress-related balance
etween SN and ECN ( Hermans et al., 2014 , 2011 ), specifically, provid-
ng another important proof-of-concept demonstration for a promising
ew class of network-based neurofeedback paradigms. Beside its clin-
cal potential to target maladaptations in large-scale network config-
rations, network-based neurofeedback might also be less affected by
hysiological confounds (in particular respiratory patterns) that are oth-
rwise difficult to remove from a single real-time neurofeedback signal
 Weiss et al., 2020 ). The large-scale nature of the involved networks over
arge parts of the brain, combined with the characteristically widespread
attern in which physiological noise affects brain activity ( Birn et al.,
006 ), suggest that this confounding factor would affect each network
o a very similar degree, and that a subtraction of two of the signal from
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wo of those networks would largely cancel out the noise. This, how-
ver, remains a theoretical argument at this point, which needs to be
urther detailed and specifically tested in future research. In the current
tudy, we consequently applied physiological noise correction to the of-
ine fMRI analyses to further mitigate this issue ( Glover et al., 2000 ;
irn et al., 2006 ; Shmueli et al., 2007 ; van Buuren et al., 2009 ). 

A last novelty of the current study is the usage of fully individual-
zed network masks to define the neurofeedback target regions. The new
rocedure relies on the assumption that the first principal component
or eigenvariate) of all voxel signals within a large network template
epresents the network’s overall function better than a simple average
ignal, as it is less affected by individual differences in network topol-
gy. Since extracting the first principal component is inconvenient in a
eal-time setting, our procedure regresses the first principal component
extracted from standard templates during resting-state – back onto

he individuals brain, in order to retrieve individualized masks from
hich the average signal can easily be extracted in real-time. Our re-

ults confirmed differences in exact network topology between individ-
als ( Fig. 3 ) and showed that learning to self-regulate these individual-
zed networks led to reliable changes in expected large-scale networks
n a group level ( Fig. 6 ). Nevertheless, more research will be needed
o fully assess the benefits of this individualization procedure over stan-
ard group template approaches. 

In conclusion, the current study constitutes an important first suc-
essful demonstration of neurofeedback training based on stress-related
arge-scale network balance – a novel approach that has the potential
o train control over the central response to stressors in real-life situ-
tions outside of the MRI scanner, opening up new potential clinical
pproaches to changing maladaptive stress responses – the underlying
echanism of a large variety of mental disorders ( de Kloet et al., 2005 )
and to promote resilience ( Kalisch et al., 2017 , 2015 ). 

. Data and code availability 

Scripts used during real-time neurofeedback training, as well as
cripts for reproducing the reported self-regulation performance, self-
valuation, peripheral recordings, and full-brain analyses are openly
vailable in the Open Science Framework at https://osf.io/sh2ck .
seudonymized data will be available on request from the Donders
epository at https://data.donders.ru.nl . Raw MR images are not pub-

icly available due to privacy or ethical restrictions. 
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